175 research outputs found

    On the choosability of claw-free perfect graphs

    Full text link
    It has been conjectured that for every claw-free graph GG the choice number of GG is equal to its chromatic number. We focus on the special case of this conjecture where GG is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 44

    Distinguishing Number for some Circulant Graphs

    Full text link
    Introduced by Albertson et al. \cite{albertson}, the distinguishing number D(G)D(G) of a graph GG is the least integer rr such that there is a rr-labeling of the vertices of GG that is not preserved by any nontrivial automorphism of GG. Most of graphs studied in literature have 2 as a distinguishing number value except complete, multipartite graphs or cartesian product of complete graphs depending on nn. In this paper, we study circulant graphs of order nn where the adjacency is defined using a symmetric subset AA of Zn\mathbb{Z}_n, called generator. We give a construction of a family of circulant graphs of order nn and we show that this class has distinct distinguishing numbers and these lasters are not depending on nn

    On Disjoint hypercubes in Fibonacci cubes

    Full text link
    The {\em Fibonacci cube} of dimension nn, denoted as Γ_n\Gamma\_n, is the subgraph of nn-cube Q_nQ\_n induced by vertices with no consecutive 1's. We study the maximum number of disjoint subgraphs in Γ_n\Gamma\_n isomorphic to Q_kQ\_k, and denote this number by q_k(n)q\_k(n). We prove several recursive results for q_k(n)q\_k(n), in particular we prove that q_k(n)=q_k−1(n−2)+q_k(n−3)q\_{k}(n) = q\_{k-1}(n-2) + q\_{k}(n-3). We also prove a closed formula in which q_k(n)q\_k(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {q_k(n)}_n=0∞\{q\_{k}(n)\}\_{n=0}^{ \infty}

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G)→{1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of d∈N∗d\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33

    Optimal accessing and non-accessing structures for graph protocols

    Full text link
    An accessing set in a graph is a subset B of vertices such that there exists D subset of B, such that each vertex of V\B has an even number of neighbors in D. In this paper, we introduce new bounds on the minimal size kappa'(G) of an accessing set, and on the maximal size kappa(G) of a non-accessing set of a graph G. We show strong connections with perfect codes and give explicitly kappa(G) and kappa'(G) for several families of graphs. Finally, we show that the corresponding decision problems are NP-Complete
    • …
    corecore